12.02.2024

Почему пластический и энергетический обмен. Пластический обмен веществ в организме


Обмен веществ и энергии является одним из основных признаков живого вещества. Обмен веществ — это совокупность процессов химического превращения веществ от момента их поступления в организм до выделения конечных продуктов обмена. В клетках постоянно идет синтез сложных органических соединений с использованием энергии и одновременно с этим — их расщепление и окисление с выделением энергии и образованием низкомолекулярных веществ.

Обмен веществ — совокупность реакций пластического (ассимиляции) и энергетического (диссимиляции) обменов.

Пластический обмен (ассимиляция) — совокупность реакций синтеза сложных органических веществ (белков, жиров, углеводов и нуклеиновых кислот) из более простых. Реакции пластического обмена являются эндотермическими (идут с поглощением энергии).

Энергетический обмен (диссимиляция) — совокупность реакций, обеспечивающих клетку энергией, в ходе которых происходит расщепление и окисление сложных органических веществ: белков — до O 2 , H 2 O, NH 2 или мочевины; жиров и углеводов — до CO 2 , и H 2 O.

Источником энергии для организма являются органические вещества: углеводы, жиры, белки. Образовавшаяся в реакциях энергетического обмена химическая энергия преобразуется в дальнейшем в электрическую, тепловую и механическую энергию. Для нормального обмена необходимы также вода, минеральные соли и витамины.

Этапы обмена веществ :

Ассимиляция и диссимиляция неразрывно связаны между собой:

  • для ассимиляции необходима энергия, которая образуется в реакциях энергетического обмена;
  • для реакций диссимиляции необходимы ферменты, которые образуются в реакциях пластического обмена;
  • ассимиляция и диссимиляция протекают в клетке одновременно и заключительные этапы одного обмена являются начальными стадиями другого.

Водно-минеральный обмен в организме

Вода входит в состав клеток, межклеточного вещества, тканевой жидкости и лимфы. Она составляет 65-70% массы тела человека (у детей больше), а плазма крови и лимфа содержат свыше 90% воды.

Значение воды в организме :

  • определяет физические свойства клетки (объем, массу, тургор);
  • универсальный растворитель;
  • основной компонент внутренней среды, место протекания большинства биохимических реакций в клетке;
  • участник реакций гидролиза, АТФ + H 2 O = АДФ + H 3 PO 4 < 40кДж;
  • участвует в транспорте веществ: поглощение питательных веществ, их передвижение и выведение конечных продуктов обмена происходит в виде водных растворов;
  • обеспечивает терморегуляцию, обеспечивая одинаковую температуру во всех частях тела организма.

Связанная вода образует сольватные (водные) оболочки вокруг белков, благодаря чему белки не слипаются друг с другом. Гидрофобно-гидрофильные взаимодействия между разными частями белковой молекулы обеспечивают образование ее четвертичной структуры.

Суточная потребность человека в воде меняется в зависимости от условий внешней среды и в среднем составляет 2-2,5 л.

Вода поступает в организм при питье (около 1 л), с пищей (около 1 л) и небольшое количество (300-350 мл) ее образуется в результате окисления органических веществ.

Вода всасывается в кишечнике (тонком и толстом), и небольшое количество ее может всасываться в ротовой полости и желудке.

Из организма вода выводится с мочой (1,2-1,5 л), с потом (500-700 мл), с выдыхаемым воздухом (350-800 мл), с калом (100-150 мл).

Минеральные соли в организме могут быть в твердом состоянии в виде кристаллов — Ca 3 (PO 4) 2 , и CaCO 3 , в костной ткани; в диссоциированном состоянии в виде катионов и анионов.

Анионы фосфорной и угольной кислот обладают буферными свойствами, т.е. способны поддерживать pH (концентрацию ионов водорода) на определенном уровне. Анионы фосфорной кислоты HPO 4 2- создают фосфатную буферную систему, поддерживающую внутри клеток слабокислую среду (pH = 6,9), а угольная кислота и ее анионы HCO 3 — создают бикарбонатную буферную систему, которая поддерживает слабощелочную реакцию внеклеточной среды (например, плазма крови) (pH = 7,4).

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке (K + , Na + ,Cl —), в процессах мышечного сокращения, свертывании крови (Ca 2+), другие необходимы для синтеза важных органических веществ. Например, остатки фосфорной кислоты входят в состав нуклеотидов, АТФ, ион Fe 2+ — в состав гемоглобина, Mg 2+ — в состав ферментов. Ионы NO 3 — , NH 4 + являются источником атомов азота, ион SO 4 2- — атомов серы, которые необходимы для синтеза аминокислот. Минеральные соли создают осмотическое давление, которое обеспечивает транспорт веществ между клетками организма.

Общее количество минеральных солей в организме человека — около 4,5%.

Потребности организма в минеральных солях удовлетворяются продуктами питания. Железа много в яблоках, иода — в морской капусте, кальция — в молочных продуктах. Человек нуждается в постоянном поступлении натрия и хлора. Поваренную соль (хлористый натрий) добавляют к пище (до 10 г в сутки). В некоторых регионах в поваренную соль добавляют иод (в связи с недостатком его в воде и местных продуктах питания).

Всасывание минеральных солей происходит вместе с водой в основном в толстом кишечнике. Попавшие в кровь минеральные соли доставляются клеткам организма.

Излишки минеральных солей выводятся из организма с мочой, потом и калом.

Обмен белков

Все белки построены из 20 аминокислот, но, несмотря на это, разнообразие белковых молекул огромно. Они обладают специфичностью, которая определяется количеством и порядком расположения аминокислот, различным сочетанием аминокислот, способностью белков присоединять другие вещества.

Роль белков в организме :

  • входят в состав мембран и органелл клетки;
  • из кератина и коллагена состоят хрящи, сухожилия, волосы, ногти;
  • некоторые белки способны присоединять и переносить различные вещества:
    • гемоглобин переносит кислород и диоксид углерода;
    • альбумины крови транспортируют жирные кислоты;
    • глобулины — ионы металлов и гормоны;
  • актин и миозин входят в состав миофибрилл мышечной ткани;
  • иммуноглобулины (антитела) обеспечивают защитные реакции иммунитета, протромбин и фибриноген участвуют в защитной реакции свертывания крови;
  • некоторые белки, встроенные в плазмалемму, способны изменять свою пространственную конфигурацию под действием факторов внешней среды (родопсин палочек сетчатки глаза);
  • многие гормоны имеют белковую природу (инсулин, глюкагон, АКТГ);
  • все ферменты являются белками (трипсин, ДНК-полимераза).

Суточная потребность в белках составляет 72-92 г. Источником белков для человека служат преимущественно продукты животного. Большое количество белков содержится в мясе (от 14 до 21%), рыбе, молоке и продуктах его переработки. Продукты растительного происхождения содержат 8-23% белков (бобовые растения).

По содержанию необходимых для организма аминокислот белки делятся на полноценные (белки молока, мяса, рыбы и др.) и неполноценные , которые не содержат хотя бы одной из незаменимых кислот. Особенно важны 10 аминокислот, которые не могут синтезироваться в организме и называются незаменимыми (лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин, аргинин и гистидин). Отсутствие в пище некоторых из них приводит к нарушению синтеза белков. При отсутствии в пище лизина замедляется рост ребенка, при недостатке валина — нарушается чувство равновесия и т.д.

Протеолитические ферменты (пепсин и химозин желудочного сока, трипсин и химотрипсин сока поджелудочной железы, энтерокиназа, аминопептидаза, карбоксипептидаза кишечного сока) расщепляют белки до полипептидов и аминокислот.

Аминокислоты всасываются в кровеносные капилляры ворсинок тонкого кишечника и разносятся кровью по всему организму. В клетках из аминокислот образуются белки, свойственные данному организму. При избытке белки преобразуются в углеводы и жиры. Часть аминокислот, не использованных в синтезе белка, окисляется с освобождением энергии (17,6 кДж на 1 г вещества) и образованием воды, диоксида углерода, аммиака и др. Аммиак в печени обезвреживается и превращается в мочевину.

Продукты диссимиляции белков выводятся из организма с мочой, потом и частично с выдыхаемым воздухом.

Обмен углеводов

Углеводы — представляют собой первичные продукты фотосинтеза и исходные продукты для биосинтеза всех других органических веществ. Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Значение углеводов в организме :

  • олигосахариды входят в состав цитоплазматической мембраны клетки и образуют гликокаликс;
  • гликоген составляет энергетический запас в клетках;
  • глюкоза является основным источником энергии, высвобождаемой в клетках живых организмов в ходе дыхания;
  • моносахариды являются основой для синтеза многих органических веществ в клетке — полисахаридов, нуклеиновых кислот и др.

В сутки человек должен получать 358-484 г углеводов. Основным их источником являются продукты растительного происхождения (картофель, хлеб, фрукты и др.). Углеводы в организме могут образовываться из белков и жиров.

Амилолитические ферменты (амилаза и мальтаза слюны, амилаза, мальтаза, лактаза, сахараза сока поджелудочной железы и тонкого кишечника) расщепляют углеводы до дисахаридов и моносахаридов.

Моносахариды всасываются в кровеносные капилляры ворсинок тонкого кишечника и разносятся кровью по всему организму. Уровень глюкозы в крови относительно постоянен и составляет 4,4-7,0 ммоль/л.

Избыток глюкозы превращается в печени в гликоген. При чрезмерном поступлении в организм углеводов они могут превращаться в жиры.

В клетках глюкоза окисляется до диоксида углерода и воды, которые удаляются с выдыхаемым воздухом, мочой, потом, при этом выделяется энергия (17,6 кДж на 1 г глюкозы).

Обмен жиров

Липиды — органические соединения, не растворимые в воде, но хорошо растворимые в органических растворителях (эфире, бензине, бензоле, хлороформе и др.). Из всех биомолекул липиды обладают наименьшей относительной молекулярной массой. Молекула жира образована молекулой трехатомного спирта глицерина и присоединенными к ней эфирными связями тремя молекулами высших карбоновых кислот: пальмитиновой, стеариновой, арахидоновой, олеиновой, линолевой, линоленовой.

Значение жиров и жироподобных веществ в организме :

  • входят в состав клеточных мембран, цитоплазмы, ядра;
  • в форме липидов хранится значительная часть энергетических запасов организма;
  • накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм и отдельные органы от механических повреждений;
  • благодаря низкой теплопроводности слой подкожного жира помогает сохранять тепло;
  • многие биологически активные вещества (гормоны и витамины) являются стероидами (тестостерон у мужчин и прогестерон у женщин, кортикостероиды, витамин D).

Суточная потребность в жирах составляет 81-110 г. Жиры поступают в организм с растительной и животной пищей. Животные жиры поступают в организм в виде сливочного масла, сыра, сметаны, свиного сала. Растительные жиры поступают в организм в виде растительного масла.

Липолитические ферменты (липазы желудочного сока, сока поджелудочной железы и тонкого кишечника) расщепляют жиры до глицерина и жирных кислот. Жирные кислоты соединяются со щелочами и желчными кислотами, омыляются, образуя растворимые соли, которые всасываются через стенки ворсинок. В ворсинках из глицерина и жирных кислот синтезируются жиры, поступающие в лимфатические капилляры ворсинок тонкого кишечника. Жиры всасываются в лимфу, затем поступают в кровь и разносятся по всем клеткам.

Часть жира, попавшего в клетки, является строительным материалом. Большая же его часть откладывается в подкожной клетчатке, в сальнике, печени, мышцах. Жиры также являются важным источником энергии: при окислении 1 г жира выделяется 38,9 кДж энергии. В организме человека жиры могут синтезироваться из углеводов и белков.

Конечными продуктами окисления жиров являются диоксид углерода и вода, которые удаляются с выдыхаемым воздухом, мочой, потом.

Витамины и их роль в обмене веществ. Гиповитаминозы

Витамины — низкомолекулярные вещества, обладающие большой биологической активностью, необходимые для жизнедеятельности организмов.

В 1881 г. русским ученым Н. И. Луниным было обнаружено, что мыши погибают, если их кормить пищевой смесью, состоящей из очищенных продуктов. Если же добавить в рацион 1 мл молока, мыши остаются здоровыми. В 1911-1912 гг. польский ученый К. Функ выделил препарат из отрубей и назвал его витамином. С этого времени началось интенсивное изучение витаминов.

Витамины обозначают буквами латинского алфавита А, В, С, D, Е, Р и т. д. Натуральные (естественные) витамины содержатся в продуктах растительного и животного происхождения и, за редким исключением, не синтезируются в организме человека. Витамины бывают водорастворимые (C, P, группы B) и жирорастворимые (A, D, E, K).

Свойства витаминов :

  • входят в состав молекул многих ферментов и некоторых физиологически активных веществ;
  • непрочные соединения: быстро разрушаются при нагревании пищевых продуктов;

Отсутствие витаминов в организме называется авитаминозом , недостаток — гиповитаминозом . Избыточное поступление витаминов в организм — гипервитаминоз — наблюдается при употреблении синтетических препаратов витаминов. Наиболее токсичны витамины А и D. Иногда гипервитаминоз А возникает при приеме в пищу продуктов, содержащих большое количество этого витамина (овощи, печень морских животных). Из водорастворимых витаминов наиболее токсичен B 12 (в больших дозах вызывают сильные аллергические реакции).

Витамин А (ретинол) участвует в окислительно-восстановительных реакциях. Содержится в сливочном масле, печени, молоке, рыбьем жире. В овощах (морковь) содержится провитамин A — каротин. Он превращается в витамин A в печени. Суточная доза — 1,5 мг.

Признаки гипо- и авитаминоза:

  • задержка роста;
  • сухость и помутнение роговицы;
  • «куриная слепота» (нарушение сумеречного зрения);
  • сухость кожи;
  • снижение сопротивляемости к заболеваниям.

Витамин D (антирахитический, кальциферол) стимулирует образование костной ткани, регулирует обмен кальция и фосфора. Содержится в сливочном масле, печени трески, курином желтке, рыбьем жире. Может образовываться в коже из эргостерина (провитамин D) под действием ультрафиолетовых лучей. Суточная доза — 0,01-0,02 мг.

Признаки гипо- и авитаминоза:

  • рахит:
    • размягчение костей;
    • искривление костей ног;
    • уплощение груди;
    • незарастание родничков;
    • позднее появление зубов у детей.

Витамин E (токоферол) предохраняет мембраны клеток и митохондрий от повреждений, участвует в окислительно-восстановительных процессах, в обмене белков, сокращении мышц, укрепляет стенки сосудов, разрушает свободные радикалы. Содержится в зеленых листьях овощей, орехах, семечках, гречневой крупе, проросших ростках пшеницы, в яйцах, растительных маслах. Суточная доза — 10-12 мг.

Признаки гипо- и авитаминоза:

  • дистрофия скелетных мышц;
  • нарушение половой функции.

Витамин K (викасол) участвует в свертывании крови. Синтезируется микрофлорой кишечника, содержится в капусте, зеленых томатах, шпинате, ягодах рябины. Из животных продуктов его источником является печень. Суточная доза — 1 мг.

Признаки гипо- и авитаминоза:

  • замедление свертывания крови;
  • самопроизвольные кровотечения.

Витамин C (аскорбиновая кислота) участвует в окислительно-восстановительных реакциях. Содержится в смородине, лимонах, клюкве, зеленом луке, картофеле. Суточная доза — 50 мг.

Признаки гипо- и авитаминоза:

  • цинга:
    • повышенная утомляемость;
    • кровоточивость десен;
    • выпадение зубов;
    • кровоизлияния;
    • снижение иммунитета.

Витамин B 1 (тиамин) участвует в регуляции обмена белков, жиров и углеводов. Содержится в дрожжах, орехах, неполированном рисе, печени, желтке куриного яйца. Суточная доза — 2,5 мг. Гипо- и авитаминоз — бери бери (поражение нервной системы с параличом конечностей и атрофией мышц).

Витамин B 2 (рибофлавин) участвует в регуляции обмена веществ, в окислительно-восстановительных реакциях. Содержится в мясе, яйцах, молоке, печени, фруктах, овощах. Суточная доза — 2,5 мг. Признаки гипо- и авитаминоза: поражение роговицы, «заеды» (ангулярный стоматит), задержка роста.

Витамин B 3 (пантотеновая кислота) является коферментом ключевых реакций метаболизма жиров. Содержится в пчелином маточном молочке и пивных дрожжах. Достаточно много его в печени животных, яичном желтке, гречихе, овсе, бобовых. Суточная доза — 10-15 мг. Признаки гипо- и авитаминоза: психоэмоциональная неустойчивостью, склонность к обморокам, изменение походки, чувство жжения стоп.

Витамин B 5 (витамин PP, никотиновая кислота) входит в состав ферментов, являющихся катализаторами окислительно-восстановительных реакций, обмена белков и т-РНК. Источником витамина являются животные (особенно печень, мясо) и многие растительные продукты (рис, хлеб, картофель). Суточная доза — 10-20 мг. Признаки гипо-и авитаминоза: дерматит (воспаление открытых участков кожи), диарея (поносы), деменция (слабоумие).

Витамин B 6 (пиридоксин) участвует в регуляции обмена аминокислот. Содержится в дрожжах, рисе, мясе, бобах. Суточная доза — 2,5 мг. Признаки гипо- и авитаминоза: воспаление кожи и нервов.

Витамин B 9 (фолиевая кислота, витамин B c) участвует в обмене белков и нуклеиновых кислот. Витамина много в лиственных овощах, например в шпинате. Он содержится в салате, капусте, томатах, землянике. Богаты им печень и мясо, яичный желток. Суточная доза — 0,3-1 мг. Признаки гипо- и авитаминоза: анемия — в крови появляются большие незрелые кроветворные клетки; снижается количество эритроцитов и гемоглобина в крови.

Витамин B 12 (антианемический) — участвует в регуляции обмена белков, жиров и углеводов. Содержится в печени, мясе, твороге, яйцах. Суточная доза — 200-300 мкг. Гипо- и авитаминоз — злокачественное малокровие (анемия).

Витамин H (биотин) — участвует в транспорте диоксида углерода, в обмене углеводов и жиров. Содержится в молоке, яйцах, печени, цветной капусте, грибах, синтезируется бактериями кишечника. Суточная доза — 150-200 мкг. Гипо- и авитаминоз — заболевания кожи, выпадение волос.

Методами сохранения витаминов в пищевых продуктах являются :

  • консервирование (метод сохранения продуктов со сравнительно небольшими потерями витаминов);
  • замораживание с образованием в цитоплазме клеток кристаллов льда (быстрое замораживание хорошо сохраняет витамины);
  • в наибольшей степени обеспечивает сохранность витаминов вакуумная сушка. Проводится в условиях разряжения при температуре не выше 50 °С;
  • квашение овощей и фруктов (в процессе молочнокислого брожения образуется молочная кислота, способствующая сохранению в заквашиваемых продуктах витамина C).

Примеры закрытых тестов

2.1. Общее количество минеральных солей в организме человека (в % от массы тела) :

  1. 0,45;
  2. 22,5;
  3. 2,25.

3.1. Незаменимыми аминокислотами не являются :

  1. валин;
  2. метионин;
  3. серин;
  4. фенилаланин;
  5. лизин.

3.2. Расщепление белков начинается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

3.3. В организме человека белки могут :

  1. превращаться в жиры;
  2. откладываться в запас;
  3. окисляться с высвобождением 7,6 кДж энергии на 1 г вещества;
  4. окисляться с высвобождением 40 кДж энергии на 1 г вещества.

4.1. Расщепление углеводов начинается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

4.2. Конечными продуктами диссимиляции углеводов являются :

  1. O 2 , H 2 O;
  2. CO 2 , глюкоза, H 2 O;
  3. CO 2 , H 2 S;
  4. O 2 , H 2 S;
  5. CO 2 , H 2 O.

4.3. В организме человека углеводы могут :

  1. запасаться в виде гликоген;
  2. запасаться в виде крахмала;
  3. запасаться в виде целлюлозы;
  4. окисляться с высвобождением 38,9 кДж энергии на 1 г вещества;
  5. превращаться в белки.

5.1. Расщепление жиров заканчивается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

5.2. Одним из конечных продуктов обмена жиров является :

  1. аминокислота;
  2. вода;
  3. кислород;
  4. глицерин;
  5. карбоновая кислота.

5.3. В организме человека жиры могут :

  1. откладываться в запас;
  2. запасаться в виде крахмала;
  3. окисляться с высвобождением 17,6 кДж энергии на 1 г вещества;
  4. окисляться с высвобождением 40 кДж энергии на 1 г вещества;
  5. превращаться в белки.

6.1. Бери-бери — это проявление гиповитаминоза :

  1. B 1 ;
  2. B 12 .

6.2. Фолиевая кислота — это витамин :

  1. B 1 ;
  2. B 6 ;
  3. B 12 ;
  4. B c .

Примеры открытых тестов

  • 1.1. Дайте определение понятия «обмен веществ».
  • 1.2. Дайте определение понятия «ассимиляция».
  • 1.3. Дайте определение понятия «диссимиляция».
  • 1.4. Перечислите этапы обмен веществ.
  • 2.1. Укажите суточную потребность организма человека в воде.
  • 3.1. Укажите суточную потребность организма человека в белках.
  • 4.1. Укажите суточную потребность организма человека в углеводах.
  • 5.1. Укажите суточную потребность организма человека в жирах.
  • 6.1. Недостаток витаминов в организме называется …
  • 6.2. Перечислите признаки гиповитаминоза A.
  • 6.3. Перечислите признаки гиповитаминоза D.
  • 6.4. Перечислите признаки гиповитаминозов группы В.
  • 6.5. Перечислите признаки гиповитаминоза С.
  • 6.6. Перечислите свойства витаминов.
  • 6.7. Перечислите способы сохранения витаминов в пищевых продуктах.

Ответы на закрытые тесты

2.1 — 2 3.1 — 3 3.2 — 2 3.3 — 1 4.1 — 1 4.2 — 5
4.3 — 1 5.1 — 3 5.2 — 2 5.3 — 1 6.1 — 4 6.2 — 5

Ответы на открытые тесты

  • 1.1. Обмен веществ — совокупность реакций пластического (ассимиляции) и энергетического (диссимиляции) обменов.
  • 1.2. Пластический обмен (ассимиляция) — совокупность реакций синтеза сложных органических веществ (белков, жиров, углеводов и нуклеиновых кислот) из более простых.
  • 13. Энергетический обмен (диссимиляция) — совокупность реакций, обеспечивающих клетку энергией, в ходе которых происходит расщепление и окисление сложных органических веществ до неорганических веществ.
  • 1.4:
    • поступление веществ в организм;
    • изменение веществ в ходе ассимиляции и диссимиляции;
    • выведение конечных продуктов обмена.
  • 2.1. Суточная потребность организма человека в воде составляет 2-2,5 л в зависимости от условий существования.
  • 3.1. Суточная потребность организма человека в белках составляет 72-92 г.
  • 4.1. Суточная потребность организма человека в улгеводах составляет 358-484 г.
  • 5.1. Суточная потребность организма человека в жирах составляет 81-110 г.
  • 6.1. Гиповитаминоз.
  • 6.2:
    • куриная слепота (нарушение сумеречного зрения);
    • сухость роговицы глаза и ее помутнение;
    • снижение иммунитета;
    • сухость кожи.
  • 6.3:
    • искривление костей ног;
    • уплощение груди;
    • не зарастание родничков черепа.
  • 6.4:
    • поражение нервной системы;
    • задержка роста;
    • нарушение зрения;
    • малокровие;
    • дерматиты.
  • 6.5:
    • поражение стенок кровеносных сосудов;
    • кровоточивость десен;
    • снижение иммунитета;
    • быстрая утомляемость.
  • 6.6:
    • входят в состав ферментов и физиологически активных веществ;
    • быстро разрушаются при нагревании пищевых продуктов;
    • действие их проявляется в малых количествах и выражается в регуляции процессов обмена веществ.
  • 6.7:
    • консервирование;
    • замораживание;
    • вакуумная сушка;
    • квашение продуктов.

Вопрос 1. Какие процессы происходят в клетке?

В организме человека, в каждой его клетке, происходят сложные химические превращения, образуются одни вещества, разрушаются другие. Для одних процессов необходима энергия, в ходе других она, наоборот, выделяется.

Вопрос 2. Что является внешним проявлением жизненных процессов?

Проявлением жизненных процессов, протекающих в клетках, является обмен веществ между организмом и окружающей средой. Из внешней среды организм получает кислород, органические вещества, минеральные соли, воду. Во внешнюю среду отдает конечные продукты обмена веществ: углекислый газ, излишек воды, минеральных солей, а также мочевину, соли мочевой кислоты и некоторые другие вещества.

Вопрос 3. Что получает организм из внешней среды?

В процессе этого обмена наш организм получает необходимую для жизни энергию, заключенную в органических веществах (продуктах животного и растительного происхождения). Часть образующейся энергии организм отдает в окружающее пространство: она рассеивается в виде тепла.

Обмен веществ между организмом и окружающей средой - необходимое условие существования живых организмов, это один из основных признаков живого.

Вопрос 4. Какие вещества организм выделяет во внешнюю среду?

Часть образующейся энергии организм отдает в окружающее пространство: она рассеивается в виде тепла. Также продукты обмена, углекислый газ и др.

Вопрос 5. Что называется пластическим обменом?

Пластический обмен (от греч. «пластика» - лепить) - совокупность процессов, приводящих к усвоению веществ и накоплению энергии.

Вопрос 6. Что происходит в организме за счет пластического обмена?

За счет пластического обмена происходит рост, развитие и деление каждой клетки.

Вопрос 7. В чем суть энергетического обмена?

Процесс, в ходе которого происходит распад части поступающих в клетки органических веществ с выделением энергии, называется энергетическим обменом.

Так необходимая для организма энергия поступает в организм с пищей, содержащей сложные органические вещества. В результате целого ряда превращений эти вещества, но уже в более простом, доступном для организма виде, попадают в клетки. Здесь они расщепляются. Например, глюкоза- до воды и углекислого газа. Освободившаяся при этом энергия используется клетками для поддержания своей жизнедеятельности или выполнения той или иной работы: сокращения мышц, проведения нервных импульсов, создания новых веществ.

Вопрос 8. Какова биологическая роль энергетического обмена?

Освободившаяся энергия при энергетическом обмене используется клетками для поддержания своей жизнедеятельности или выполнения той или иной работы. Для поддержания жизни всего организма.

Вопрос 9. Что называется обменом веществ и энергии?

Обмен веществ и энергии – важнейшая функция живого организма и один из важнейших признаков жизни. Заключается в поступлении в организм веществ, необходимых для построения и обновления структурных элементов клеток и тканей, а также выработке энергии для обеспечения жизненных процессов, и в удалении из него образовавшихся продуктов распада.

ПОДУМАЙТЕ

Почему пластический и энергетический обмены неразрывно связаны между собой и являются двумя сторонами единого процесса обмена веществ и энергии?

Процессы пластического и энергетического обменов происходят одновременно, они тесно взаимосвязаны. Это две стороны единого процесса обмена веществ и энергии.

Если смотреть по порядку, то усвоение веществ организмом это пластический обмен, распад части поступающих в клетки органических веществ с выделением энергии это энергетический обмен, накопление энергии в клетках это энергетический обмен, а при этом идет рост и развитие молодого организма, а это пластический обмен.

Т. е. пластический и энергетический обмены – это части одного глобального и сложного процесса (процесс обмена веществ и энергии), который проходит в организме.

Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме. Биологи разделяют его на пластический (анаболизм ) и энергетический обмены (катаболизм ), которые связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.

Для отдельных процессов, происходящих в организмах, используются следующие термины:

Анаболизм (ассимиляция ) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.

Катаболизм (диссимиляция ) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.

Живые существа для своей жизнедеятельности используют световую и химическую энергию. Зеленые растения – автотрофы , – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода. Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами. Среди растений могут встречаться те, которые питаются смешанным способом (миксотрофно ) – росянка, венерина мухоловка или даже гетеротроф– но – раффлезия. Из представителей одноклеточных животных миксотрофами считаются эвглены зеленые.



Ферменты, их химическая природа, роль в метаболизме . Ферменты – это всегда специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр, пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.

Ферментами катализируются все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и-РНК на ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза».

Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.

Энергетический обмен в клетке (диссимиляция)

Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каждый из которых сопровождается несколькими ферментативными реакциями.

Первый этап подготовительный . В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

Второй этап бескислородный (гликолиз ). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла.

В клетках дрожжей и растений (при недостатке кислорода ) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением .

Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.

Третий этап кислородный , состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

Окислительное фосфорилирование или клеточное дыхание происходит, на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

Суммарная реакция энергетического обмена:

С6Н12O6 + 6O2 → 6СO2 + 6Н2O + 38АТФ.

ПРИМЕРЫ ЗАДАНИЙ

Часть А

А1. Способ питания хищных животных называется

1) автотрофным 3) гетеротрофным

2) миксотрофным 4) хемотрофным

А2. Совокупность реакций обмена веществ называется:

1) анаболизм 3) диссимиляция

2) ассимиляция 4) метаболизм

А3. На подготовительном этапе энергетического обмена происходит образование:

1) 2 молекул АТФ и глюкозы

2) 36 молекул АТФ и молочной кислоты

3) аминокислот, глюкозы, жирных кислот

4) уксусной кислоты и спирта

А4. Вещества, катализирующие биохимические реакции в организме, – это:

1) белки 3) липиды

2) нуклеиновые кислоты 4) углеводы

А5. Процесс синтеза АТФ в ходе окислительного фосфорилирования происходит в:

1) цитоплазме 3) митохондриях

2) рибосомах 4) аппарате Гольджи

А6. Энергия АТФ, запасенная в процессе энергетического обмена, частично используется для реакций:

1) подготовительного этапа

2) гликолиза

3) кислородного этапа

4) синтеза органических соединений

А7. Продуктами гликолиза являются:

1) глюкоза и АТФ

2) углекислый газ и вода

3) пировиноградная кислота и АТФ

4) белки, жиры, углеводы

Часть В

В1. Выберите события, происходящие на подготовительном этапе энергетического обмена у человека

1) белки распадаются до аминокислот

2) глюкоза расщепляется до углекислого газа и воды

3) синтезируются 2 молекулы АТФ

4) гликоген расщепляется до глюкозы

5) образуется молочная кислота

6) липиды расщепляются до глицерина и жирных кислот

В2. Соотнесите процессы, происходящие при энергетическом обмене с этапами, на которых они происходят

ВЗ. Определите последовательность превращений куска сырого картофеля в процессе энергетического обмена в организме свиньи:

А) образование пирувата

Б) образование глюкозы

В) всасывание глюкозы в кровь

Г) образование углекислого газа и воды

Д) окислительное фосфорилирование и образование Н2О

Е) цикл Кребса и образование СО2

Часть С

С1. Объясните причины утомляемости спортсменов-марафонцев на дистанциях, и как она преодолевается?

Фотосинтез и хемосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл . Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат ). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

«Световая фаза» – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ Н

2Н+ + 4е- + НАДФ+ → НАДФ Н;

3) фотолиз воды , происходящий при участии квантов света: 2Н2О → 4Н+ + 4е- + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Так как в экзаменационных работах спрашивают не о механизмах фотосинтеза, а о результатах этого процесса, то мы и перейдем к ним.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ Н. Таким образом свет нужен только для синтеза АТФ и НАДФ-Н.

«Темновая фаза» – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза -

Значение фотосинтеза . В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH3 → HNQ2 → HNO3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe2+ → Fe3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H2S + O2 = 2H2O + 2S + Q,

H2S + O2 = 2H2SO4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Роль хемосинтеза. Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

ПРИМЕРЫ ЗАДАНИЙ

Часть А

А1. Фотосинтез – это процесс, происходящий в зеленых растениях. Он связан с:

1) расщеплением органических веществ до неорганических

2) созданием органических веществ из неорганических

3) химическим превращения глюкозы в крахмал

4) образованием целлюлозы

А2. Исходным материалом для фотосинтеза служат

1) белки и углеводы 3) кислород и АТФ

2) углекислый газ и вода 4) глюкоза и кислород

А3. Световая фаза фотосинтеза происходит

1) в гранах хлоропластов 3) в строме хлоропластов

2) в лейкопластах 4) в митохондриях

А4. Энергия возбужденных электронов в световой стадии используется для:

1) синтеза АТФ 3) синтеза белков

2) синтеза глюкозы 4) расщепления углеводов

А5. В результате фотосинтеза в хлоропластах образуются:

1) углекислый газ и кислород

2) глюкоза, АТФ и кислород

3) белки, жиры, углеводы

4) углекислый газ, АТФ и вода

А6. К хемотрофным организмам относятся

1) возбудители туберкулеза

2) молочнокислые бактерии

3) серобактерии

Часть В

В1. Выберите процессы, происходящие в световой фазе фотосинтеза

1) фотолиз воды

2) образование глюкозы

3) синтез АТФ и НАДФ Н

4) использование СО2

5) образование свободного кислорода

6) использование энергии АТФ

В2. Выберите вещества, участвующие в процессе фотосинтеза

целлюлоза 4) углекислый газ

гликоген 5) вода

хлорофилл 6) нуклеиновые кислоты

Часть С

С1. Какие условия необходимы для начала процесса фотосинтеза?

С2. Как строение листа обеспечивает его фотосинтезирующие функции?

Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме. Биологи разделяют его

Слайд 19

на пластический (анаболизм ) и энергетический обмены (катаболизм ), которые связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.

Для отдельных процессов, происходящих в организмах, используются следующие термины:

Анаболизм (ассимиляция ) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.

Катаболизм (диссимиляция ) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.

Слайд 20

Живые существа для своей жизнедеятельности используют световую и химическую энергию. Зеленые растения – автотрофы ,– синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода. Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами. Среди растений могут встречаться те, которые питаются смешанным способом (миксотрофно ) – росянка, венерина мухоловка или даже гетеротроф– но – раффлезия. Из представителей одноклеточных животных миксотрофами считаются эвглены зеленые.

Слайд 21

Ферменты, их химическая природа, роль в метаболизме .

Ферменты – это всегда специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр, пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.



Ферментами катализируются все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и-РНК на ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза».

Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.

Слайд 22

Энергетический обмен в клетке (диссимиляция)

Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каждый из которых сопровождается несколькими ферментативными реакциями.

Слайд 23

Первый этап подготовительный . В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

Второй этап бескислородный (гликолиз ). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С 6 Н 12 O 6 + 2АДФ + 2Ф > 2С 3 Н 4 O 3 + 2АТФ. Остальная энергия рассеивается в виде тепла.

В клетках дрожжей и растений (при недостатке кислорода ) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением .

Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С 3 Н 6 O 3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.

Третий этап кислородный , состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

Окислительное фосфорилирование или клеточное дыхание происходит, на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

Слайд 24

Суммарная реакция энергетического обмена:

С 6 Н 12 O 6 + 6O 2 > 6СO 2 + 6Н 2 O + 38АТФ.

Слайд 25

Фотосинтез и хемосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО 2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл .

Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ + – никотинамиддифосфат ). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ.

Слайд 26

Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

Слайд 27

«Световая фаза» – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ + до НАДФ Н

2Н + + 4е - + НАДФ + > НАДФ Н;

3) фотолиз воды , происходящий при участии квантов света: 2Н 2 О > 4Н + + 4е - + О 2 .

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ Н. Таким образом свет нужен только для синтеза АТФ и НАДФ-Н.

Слайд 28

«Темновая фаза» – процесс преобразования СО 2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Слайд 29

Суммарное уравнение фотосинтеза -

Слайд 30

Значение фотосинтеза .

В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Слайд 31

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH 3 > HNQ 2 > HNO 3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe 2+ >Fe 3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H 2 S + O 2 = 2H 2 O + 2S + Q,

H 2 S + O 2 = 2H 2 SO 4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Роль хемосинтеза. Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

Видео «Фотосинтез»

Перерыв

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) - мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H 2 O → АДФ + H 3 PO 4 + Q 1
АДФ + H 2 O → АМФ + H 3 PO 4 + Q 2
АМФ + H 2 O → аденин + рибоза + H 3 PO 4 + Q 3 ,
где АТФ - аденозинтрифосфорная кислота; АДФ - аденозиндифосфорная кислота; АМФ - аденозинмонофосфорная кислота; Q 1 = Q 2 = 30,6 кДж; Q 3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование - присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Энергетический обмен

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

Классификация организмов по отношению к свободному кислороду

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

1. Первый этап - подготовительный - заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры - до глицерина и жирных кислот, полисахариды - до моносахаридов, нуклеиновые кислоты - до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных - в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.
2. Второй этап - неполное окисление (бескислородный) - заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH 3 COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД + и запасаются в виде НАД·Н.
Суммарная формула гликолиза имеет следующий вид:
C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ + 2НАД+ → 2C 3 Н 4 O 3 + 2H 2 O + 2АТФ + 2НАД·Н.
Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) перерабатываются либо в этиловый спирт - спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода)
CH 3 COCOOH → СО 2 + СН 3 СОН
СН 3 СОН + 2НАД·Н → С 2 Н 5 ОН + 2НАД + ,
либо в молочную кислоту - молочнокислое брожение (в клетках животных при недостатке кислорода)
CH 3 COCOOH + 2НАД·Н → C 3 Н 6 O 3 + 2НАД + .
При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.
3. Третий этап - полное окисление (дыхание) - заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий:
А) образование ацетилкоэнзима А;
Б) окисление ацетилкоэнзима А в цикле Кребса;
В) окислительное фосфорилирование в электронотранспортной цепи.

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА).
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) - это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики - НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО 2 , а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н 2 .
В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н 2 окисляются молекулярным кислородом О 2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н 2 –2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:
О 2 + е - → О 2 - .
В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О 2 -), а снаружи - положительно (за счёт Н +), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H + силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:
1/2О 2 - +2H + → Н 2 О.
Энергия ионов водорода H + , транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:
АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.
Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:
C 6 H 12 O 6 + 6O 2 + 38H 3 PO 4 + 38АДФ → 6CO 2 + 44H 2 O + 38АТФ.
Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания - ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы - 38 молекул АТФ.

Пластический обмен

Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО 2 , Н 2 О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез

Фотосинтез - синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:

Фотосинтез протекает при участии фотосинтезирующих пигментов , обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот - во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:

Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние.
Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н + -резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н +), а наружная - отрицательно (за счёт е -). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:
АДФ + Ф → АТФ.

Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием .
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
2Н + + 4е – + НАДФ + → НАДФ·Н 2 .
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н 2 . Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н 2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО 2 , поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО 2 связывается с водородом из НАДФ·Н 2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений - аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.

Сравнительная характеристика фотосинтеза и дыхания эукариот

Признак Фотосинтез Дыхание
Уравнение реакции 6СО 2 + 6Н 2 О + энергия света → C 6 H 12 O 6 + 6O 2 C 6 H 12 O 6 + 6O 2 → 6СО 2 + 6Н 2 О + энергия (АТФ)
Исходные вещества Углекислый газ, вода
Продукты реакции Органические вещества, кислород Углекислый газ, вода
Значение в круговороте веществ Синтез органических веществ из неорганических Разложение органических веществ до неорганических
Превращение энергии Превращение энергии света в энергию химических связей органических веществ Превращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапы Световая и темновая фаза (включая цикл Кальвина) Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процесса Хлоропласты Гиалоплазма (неполное окисление) и митохондрии (полное окисление)

Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген - участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом . Совокупность генов клеточного ядра представляет собой генотип , совокупность генов гаплоидного набора хромосом - гено́м , совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) - плазмон .
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.

Транскрипция (от лат. transcriptio - переписывание) - синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон ) начинается промотором - участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором - участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон - это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.

Гены эукариот состоят из чередующихся кодирующих (экзонов ) и некодирующих (интронов ) участков.

После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.

Процессинг - процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг - удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз. Трансляция (от лат. translatio - перевод) - синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

Этапы трансляции

Этап Характеристика
Инициация Сборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-трнк , а затем с мрн к, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.
Элонгация Удлинение полипептидной цепи. Рибосома перемещается вдоль мрнк , что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.
Терминация Завершение синтеза полипептидной молекулы. Рибосома достигает одного из трёх стоп-кодонов мрнк , а так как не существует трнк с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мрнк и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза. К реакциям матричного синтеза относятся

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов . Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах - гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.


© 2024
drozdpost.ru - Строительный портал - Drozdpost